Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.873
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731815

The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.


Antifungal Agents , Chitosan , Cyclohexane Monoterpenes , Hydrazones , Nanoparticles , Chitosan/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Nanoparticles/chemistry , Cyclohexane Monoterpenes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Delayed-Action Preparations , Microbial Sensitivity Tests , Drug Carriers/chemistry
2.
Drug Dev Res ; 85(3): e22182, 2024 May.
Article En | MEDLINE | ID: mdl-38704829

Our research aims to reduce the bacterial resistance of clindamycin against Gram-positive bacteria and expand its range of bacterial susceptibility. First, we optimized the structure of clindamycin based on its structure-activity relationship. Second, we employed the fractional inhibitory concentration method to detect drugs suitable for combination with clindamycin derivatives. We then used a linker to connect the clindamycin derivatives with the identified combined therapy drugs. Finally, we tested antibacterial susceptibility testing and conducted in vitro bacterial inhibition activity assays to determine the compounds. with the highest efficacy. The results of our study show that we synthesized clindamycin propionate derivatives and clindamycin homo/heterodimer derivatives, which exhibited superior antibacterial activity compared to clindamycin and other antibiotics against both bacteria and fungi. In vitro bacteriostatic activity testing against four types of Gram-negative bacteria and one type of fungi revealed that all synthesized compounds had bacteriostatic effects at least 1000 times better than clindamycin and sulfonamides. The minimum inhibitory concentration (MIC) values for these compounds ranged from 0.25 to 0.0325 mM. Significantly, compound 5a demonstrated the most potent inhibitory activity against three distinct bacterial strains, displaying MIC values spanning from 0.0625 to 0.0325 mM. Furthermore, our calculations indicate that compound 5a is safe for cellular use. In conclusion, the synthesized compounds hold great promise in addressing bacterial antibiotic resistance.


Anti-Bacterial Agents , Clindamycin , Drug Design , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Microbial Sensitivity Tests , Clindamycin/pharmacology , Clindamycin/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Structure-Activity Relationship , Humans , Gram-Positive Bacteria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry
3.
J Inorg Biochem ; 256: 112572, 2024 Jul.
Article En | MEDLINE | ID: mdl-38691971

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 µM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.


Antifungal Agents , Coordination Complexes , Microbial Sensitivity Tests , Silver , Voriconazole , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Voriconazole/pharmacology , Voriconazole/chemistry , Silver/chemistry , Silver/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Candida albicans/drug effects , Candida/drug effects , Crystallography, X-Ray
4.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Article En | MEDLINE | ID: mdl-38582463

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Antioxidants , Chitosan , Enzyme Inhibitors , Molecular Docking Simulation , Schiff Bases , Succinate Dehydrogenase , Chitosan/chemistry , Chitosan/pharmacology , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Glycine/chemistry , Glycine/analogs & derivatives , Glycine/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Fusarium/drug effects , Botrytis/drug effects , Chemistry Techniques, Synthetic
5.
Int J Biol Macromol ; 267(Pt 1): 131373, 2024 May.
Article En | MEDLINE | ID: mdl-38583838

Fruit spoilage can cause huge economic losses, in which fungal infection is one of the main influencing factors, how to effectively control mould and spoilage of fruits and prolong their shelf-life has become a primary issue in the development of fruit and vegetable industry. In this study, rosin derivative maleopimaric anhydride (MPA) was combined with biodegradable and antifungal chitosan (CS) to enhance its antifungal and preservative properties. The modified compounds were characterized by FTIR, 1H NMR spectra and XRD, and the in vitro antifungal properties of the modified compounds were evaluated by the radial growth assay and the minimal inhibitory concentration assay. The preservation effect on small mandarin oranges and longan was studied. The analysis revealed that the modification product (CSMA) of MPA access to C6-OH of CS had a better antifungal effect. In addition, CSMA was more environmentally friendly and healthier than the commercially available chemical preservative (Imazalil), and had the same antifungal preservative effect in preserving small mandarin orange, and was able to extend the shelf life to >24 d. In the preservation of longan, CSMA was more effective against tissue water loss and was able to maintain the moisture in the longan pulp and extend the shelf life. Therefore, CSMA has good application potentials in longan keeping-fresh.


Antifungal Agents , Chitosan , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Fruit/chemistry , Food Preservation/methods , Citrus/chemistry
6.
J Agric Food Chem ; 72(19): 11185-11194, 2024 May 15.
Article En | MEDLINE | ID: mdl-38687832

Aspergillus flavus contamination in agriculture and food industries poses threats to human health, leading to a requirement of a safe and effective method to control fungal contamination. Chitosan-based nitrogen-containing derivatives have attracted much attention due to their safety and enhanced antimicrobial applications. Herein, a new benzimidazole-grafted chitosan (BAC) was synthesized by linking the chitosan (CS) with a simple benzimidazole compound, 2-benzimidazolepropionic acid (BA). The characterization of BAC was confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy (1H and 13C NMR). Then, the efficiency of BAC against A. flavus ACCC 32656 was investigated in terms of spore germination, mycelial growth, and aflatoxin production. BAC showed a much better antifungal effect than CS and BA. The minimum inhibitory concentration (MIC) value was 1.25 mg/mL for BAC, while the highest solubility of CS (16.0 mg/mL) or BA (4.0 mg/mL) could not completely inhibit the growth of A. flavus. Furthermore, results showed that BAC inhibited spore germination and elongation by affecting ergosterol biosynthesis and the cell membrane integrity, leading to the permeabilization of the plasma membrane and leakage of intracellular content. The production of aflatoxin was also inhibited when treated with BAC. These findings indicate that benzimidazole-derived natural CS has the potential to be used as an ideal antifungal agent for food preservation.


Aspergillus flavus , Benzimidazoles , Chitosan , Fungicides, Industrial , Microbial Sensitivity Tests , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Chitosan/pharmacology , Chitosan/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Aflatoxins , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Spores, Fungal/drug effects , Spores, Fungal/growth & development
7.
Chem Biodivers ; 21(5): e202400027, 2024 May.
Article En | MEDLINE | ID: mdl-38602839

Garlic oil has a wide range of biological activities, and its broad-spectrum activity against phytopathogenic fungi still has the potential to be explored. In this study, enzymatic treatment of garlic resulted in an increase of approximately 50 % in the yield of essential oil, a feasible GC-MS analytical program for garlic oil was provided. Vacuum fractionation of the volatile oil and determination of its inhibitory activity against 10 fungi demonstrated that garlic oil has good antifungal activity. The antifungal activity levels were ranked as diallyl trisulfide (S-3)>diallyl disulfide (S-2)>diallyl monosulfide (S-1), with an EC50 value of S-3 against Botrytis cinerea reached 8.16 mg/L. Following the structural modification of compound S-3, a series of derivatives, including compounds S-4~7, were synthesized and screened for their antifungal activity. The findings unequivocally demonstrated that the compound dimethyl trisulfide (S-4) exhibited exceptional antifungal activity. The EC50 of S-4 against Sclerotinia sclerotiorum reached 6.83 mg/L. SEM, In vivo experiments, and changes in mycelial nucleic acids, soluble proteins and soluble sugar leakage further confirmed its antifungal activity. The study indicated that the trisulfide bond structure was the key to good antifungal activity, which can be developed into a new type of green plant-derived fungicide for plant protection.


Allyl Compounds , Antifungal Agents , Garlic , Microbial Sensitivity Tests , Oils, Volatile , Sulfides , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/chemical synthesis , Sulfides/pharmacology , Sulfides/chemistry , Garlic/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Allyl Compounds/isolation & purification , Allyl Compounds/chemical synthesis , Distillation , Drug Design , Botrytis/drug effects , Structure-Activity Relationship , Ascomycota/drug effects , Molecular Structure
8.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38557062

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Antifungal Agents , Rhizoctonia , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Rhizoctonia/drug effects , Terpenes/pharmacology , Terpenes/chemical synthesis , Terpenes/chemistry , Stereoisomerism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Microbial Sensitivity Tests
9.
J Med Chem ; 67(8): 6238-6252, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38598688

Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 µg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.


Antifungal Agents , Candida albicans , Cryptococcus neoformans , Microbial Sensitivity Tests , Tetrazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Tetrazoles/pharmacology , Tetrazoles/chemistry , Tetrazoles/chemical synthesis , Tetrazoles/pharmacokinetics , Tetrazoles/therapeutic use , Animals , Humans , Candida albicans/drug effects , Mice , Cryptococcus neoformans/drug effects , Structure-Activity Relationship , Aspergillus fumigatus/drug effects , Drug Discovery , Drug Resistance, Fungal/drug effects , Candidiasis/drug therapy , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme System/metabolism
10.
Molecules ; 29(8)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38675600

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Alanine , Alanine/analogs & derivatives , Phenazines , Phenazines/chemistry , Phenazines/pharmacology , Phenazines/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Phytophthora/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Phloem/metabolism , Phloem/drug effects , Ascomycota/drug effects , Ascomycota/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Drug Design , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis
11.
Sci Rep ; 14(1): 9392, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658769

A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.


Amino Acids , Antifungal Agents , Drug Design , Insecticides , Molecular Docking Simulation , Insecticides/pharmacology , Insecticides/chemical synthesis , Insecticides/chemistry , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Amino Acids/chemistry , Aphids/drug effects , Tetranychidae/drug effects , Structure-Activity Relationship , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Microbial Sensitivity Tests
12.
Org Biomol Chem ; 22(17): 3459-3467, 2024 05 01.
Article En | MEDLINE | ID: mdl-38597668

A water mediated three-component reaction of isatin, 4-aminocoumarin, and 1,3-cyclodicarbonyl compounds is reported for the synthesis of spiro[chromeno[4,3-b]cyclopenta[e]pyridine-7,3'-indoline]trione and the spiro[chromeno[4,3-b]quinoline 7,3'-indoline]trione. Up to 27 different spirooxindole derivatives were synthesized by this method. The bioactivity of these spirooxindole derivatives was evaluated and they were found to show antifungal activity against Cercospora arachidicola, Physalospora piricola, Rhizoctonia cerealis, and Fusarium moniliforme.


Antifungal Agents , Benzopyrans , Indoles , Nitriles , Spiro Compounds , Water , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Water/chemistry , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Microbial Sensitivity Tests , Oxindoles/pharmacology , Oxindoles/chemical synthesis , Oxindoles/chemistry , Molecular Structure , Structure-Activity Relationship , Fusarium/drug effects
13.
Chem Biodivers ; 21(5): e202400355, 2024 May.
Article En | MEDLINE | ID: mdl-38453645

In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 µM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 µM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 µM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.


Antifungal Agents , Drug Design , Fusarium , Microbial Sensitivity Tests , Oximes , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Fusarium/drug effects , Oximes/chemistry , Oximes/pharmacology , Oximes/chemical synthesis , Structure-Activity Relationship , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Phytophthora/drug effects , Molecular Structure , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis , Dose-Response Relationship, Drug , Ascomycota/drug effects
14.
Chem Biodivers ; 21(5): e202301986, 2024 May.
Article En | MEDLINE | ID: mdl-38478727

In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.


Acridines , Anti-Bacterial Agents , Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Microbial Sensitivity Tests , Molecular Docking Simulation , Acridines/chemistry , Acridines/pharmacology , Acridines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Dynamics Simulation , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Dose-Response Relationship, Drug , Gram-Positive Bacteria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis
15.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Article En | MEDLINE | ID: mdl-38494946

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Coumarins , Drug Design , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Structure-Activity Relationship , Molecular Docking Simulation , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Quantitative Structure-Activity Relationship , Botrytis/drug effects
16.
Chem Biodivers ; 21(5): e202301667, 2024 May.
Article En | MEDLINE | ID: mdl-38502834

In this paper, a new tridentate Schiff base ligand (L) with nitrogen donor atoms and its cadmium(II) complexes with the general formula of CdLX2 (X=Cl-, Br-, I-, SCN-, N3 -, NO3 -) have been synthesized and characterized by physical and spectral (FT/IR, UV-Vis, Mass, and 1H, 13C NMR spectroscopies) methods. Also nano-structured cadmium chloride and bromide complexes were synthesized by sonochemical method and then used to prepare nanostructured cadmium oxide confirmed by XRD and SEM techniques. Thermal behavior of the compounds was studied in the temperature range of 25 to 900 °C under N2 atmosphere at a heating rate of 20 °C/ min. Moreover, thermo-kinetic activation parameters of thermal decomposition steps were calculated according to the Coats-Redfern relationship. Antimicrobial activities of the synthesized compounds against two gram-positive and two gram-negative bacteria such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and two fungi of Candida albicans and Aspergillus niger were investigated by well diffusion method. SEM technique was used to monitor the morphological changes of the bacteria treated with the compounds. The 2,2-Diphenyl-1-picrylhydrazyl(DPPH) and the ferric reducing antioxidant power (FRAP) methods were used to evaluate the antioxidant ability of the ligand and its cadmium(II) complexes. In final, the cytotoxicity properties of the ligand and some cadmium(II) complexes against PC3 cancer cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) bioassay and nitric oxide (NO) level measurement. The morphological changes of prostate cancer (PC3) cells due to treatment with the ligand and its complexes confirmed their anticancer effectiveness.


Antineoplastic Agents , Antioxidants , Cadmium , Coordination Complexes , Microbial Sensitivity Tests , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cadmium/chemistry , Cadmium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gram-Positive Bacteria/drug effects , Cell Survival/drug effects , Gram-Negative Bacteria/drug effects , Molecular Structure , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Candida albicans/drug effects , Cell Proliferation/drug effects , Fungi/drug effects , Structure-Activity Relationship , Picrates/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Temperature
17.
Arch Pharm (Weinheim) ; 357(5): e2300381, 2024 May.
Article En | MEDLINE | ID: mdl-38345272

A series of 23 novel benzylamines was synthesized by reductive amination from halogen-substituted 3- and 4-benzyloxybenzaldehyde derivatives and 6-methylhept-2-yl amine or n-octylamine. The antimycotic activity of the resulting amines was evaluated in a microdilution assay against the apathogenic yeast Yarrowia lipolytica as test microorganism. Promising compounds were also tested against human pathogenic Candida species. The influence of halogen substituents at the benzyl ether side chain was studied in this screening, as well as the influence of the branched side chain of (±)-6-methylhept-2-yl amine in comparison with the n-octyl side chain.


Antifungal Agents , Benzylamines , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Benzylamines/pharmacology , Benzylamines/chemistry , Benzylamines/chemical synthesis , Structure-Activity Relationship , Candida/drug effects , Molecular Structure , Yarrowia/drug effects , Humans , Dose-Response Relationship, Drug
18.
J Pept Sci ; 30(6): e3569, 2024 Jun.
Article En | MEDLINE | ID: mdl-38301277

The pursuit of novel antifungal agents is imperative to tackle the threat of antifungal resistance, which poses major risks to both human health and to food security. Iturin A is a cyclic lipopeptide, produced by Bacillus sp., with pronounced antifungal properties against several pathogens. Its challenging synthesis, mainly due to the laborious synthesis of the ß-amino fatty acid present in its structure, has hindered the study of its mode of action and the development of more potent analogues. In this work, a facile synthesis of bioactive iturin A analogues containing an alkylated cysteine residue is presented. Two analogues with opposite configurations of the alkylated cysteine residue were synthesized, to evaluate the role of the stereochemistry of the newly introduced amino acid on the bioactivity. Antifungal assays, conducted against F. graminearum, showed that the novel analogues are bioactive and can be used as a synthetic model for the design of new analogues and in structure-activity relationship studies. The assays also highlight the importance of the ß-amino acid in the natural structure and the role of the stereochemistry of the amino fatty acid, as the analogue with the D configuration showed stronger antifungal properties than the one with the L configuration.


Antifungal Agents , Fusarium , Lipopeptides , Microbial Sensitivity Tests , Peptides, Cyclic , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/chemical synthesis , Fusarium/drug effects , Molecular Structure
19.
Chem Biodivers ; 21(5): e202302064, 2024 May.
Article En | MEDLINE | ID: mdl-38390665

Based on our previous research, a 3D-QSAR model (q2=0.51, ONC=5, r2=0.982, F=271.887, SEE=0.052) was established to predict the inhibitory effects of triazole Schiff base compounds on Fusarium graminearum, and its predictive ability was also confirmed through the statistical parameters. According to the results of the model design, 30 compounds with superior bioactivity compared to the template molecule 4 were obtained. Seven of these compounds (DES2-6, DES9-10) with improved biological activity and readily available raw materials were successfully synthesized. Their structures were confirmed through HRMS, NMR, and single crystal X-ray diffraction analysis (DES-5). The bioactivity of the final products was investigated through an in vitro antifungal assay. There was little difference in the EC50 values between the experimental and predicted values of the model, demonstrating the reliability of the model. Especially, DES-3 (EC50=9.915 mg/L) and DES-5 (EC50=9.384 mg/L) exhibited better inhibitory effects on Fusarium graminearum compared to the standard drug (SD) triadimenol (EC50=10.820 mg/L). These compounds could serve as potential new fungicides for future research. The interaction between the final products and isocitrate lyase (ICL) was investigated through molecular docking. Compounds with R groups that have a higher electron-donating capacity were found to be biologically active.


Antifungal Agents , Fusarium , Microbial Sensitivity Tests , Quantitative Structure-Activity Relationship , Schiff Bases , Triazoles , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Fusarium/drug effects , Molecular Structure , Molecular Docking Simulation
20.
Chem Biodivers ; 21(5): e202400316, 2024 May.
Article En | MEDLINE | ID: mdl-38422224

New 1H-1,2,4-triazolyl derivatives were synthesized, and six of them were selected based on docking prediction for the investigation of their antimicrobial activity against five bacterial and eight fungal strains. All compounds demonstrated antibacterial activity with MIC lower than that of the ampicillin and chloramphenicol. In general, the most sensitive bacteria appeared to be P. fluorescens, while the plant pathogen X. campestris was the most resistant. The antifungal activity of the compounds was much better than the antibacterial activity. All compounds were more potent (6 to 45 times) than reference drugs ketoconazole and bifonazole with the best activity achieved by compound 4 a. A. versicolor, A. ochraceus, A.niger, and T.viride showed the highest sensitivity to compound 4 b, while, T. viride, P. funiculosum, and P.ochrochloron showed good sensitivity to compound 4 a. Molecular docking studies suggest that the probable mechanism of antibacterial activity involves the inhibition of the MurB enzyme of E. coli, while CYP51 of C. albicans appears to be involved in the mechanism of antifungal activity. It is worth mentioning that none of the tested compounds violated Lipinski's rule of five.


Anti-Bacterial Agents , Antifungal Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Fungi/drug effects , Bacteria/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis
...